免费精品视频一区二区三区学生,被3个黑人老外玩的4p,人妻精品无码中文无码一区无,添女人荫蒂全部过

首頁> 外文學位 >Visualizing and understanding complex micro/nanofluidic flow behavior.
【24h】

Visualizing and understanding complex micro/nanofluidic flow behavior.

機譯:可視化并了解復雜的微/納流體流動行為。

獲取原文
獲取原文并翻譯 | 示例

摘要

Micro and Nano-fluidic devices represent an emerging new area of medical therapeutics and diagnostics. Micro and Nano-scale systems have unique properties that lead to increasing the control, accuracy, efficiency, and speed, while reducing waste and operator error of various medical tests and drug delivery techniques. In order to fully realize the potential of this exciting field the flow behavior of relevant systems must be studied and understood so that new devices can be properly designed. Studying fluid flow behavior at such small scales requires the use of microscopy, and novel fabrication techniques are essential if there is any hope of realizing the potential of nano-scale devices.;Confocal microscopy is a well developed technique in the area of medical imaging due to its thin focus planes, increased resolution, and 3D imaging capabilities. However, until recently it has not been a viable technique for imaging dynamic systems where fast image capturing is required. This is due to the point scanning nature of the traditional confocal system in which single pixel intensities are measured with a scanning photon multiplying tube. New high-speed confocal systems have been developed utilizing arrays of pinholes on spinning disks that enable the use of a camera for faster full frame detection. A high-speed spinning disk confocal microscope system has been developed at Ohio State to use for studying dynamic processes and flow behavior within micro and nano-scale devices.;The high-speed confocal system was used to generate 3D particle tracking velocity profiles for fluid flow in a micro-channel, demonstrating the ability to track not just the flow at the center of the channel but at the top and bottom as well. This is a valuable tool for studying micro-devices in which 3D flow characteristics will be present. Gas-liquid bubble formation was studied in micro-channels and compared with simulations. It was determined that the dimensionless Capillary number, along with gas to liquid flow rate ratio and mixer geometry, could be used to accurately predict bubble size and frequency within a micro-channel mixer.;The flow of biological polymers in a micro-contraction was studied to gain insight into the fundamental molecular behavior of long chain polymer systems, as well as study the flow behavior of long chain DNA solutions that may be present in useful micro-fluidic devices where contraction geometries will be common. Unusual viscoelastic flow phenomena was observed, and a new jerky shear banding flow regime was identified at extremely high elastic numbers. Additionally, molecular staining of the biological polymers allowed the behavior of the long chain molecules to be observed during interesting flows. Next, this individual-chain visualization technique was used to produce the first molecular imaging of wall slip in entangled solutions. Chain disentanglement was observed under slip conditions for both channel flow and during rheometric shearing experiments.;Lastly, the transport of medically important DNA solutions across a nano-channel device was characterized to demonstrate its potential as a novel gene-delivery technique. Micro-channel arrays containing embedded nano-channels were fabricated using a novel DNA combing and imprinting nano-fabrication technique developed at Ohio State. The electrokinetic transport of antisense oligonucleotides, plasmid green fluorescent protein, and linear green fluorescent protein molecules was studied. The ability to control the amount of molecules that cross the nano-channel by varying electric field pulses was demonstrated to establish the potential for a novel nano-electroporation device.
機譯:微流體和納米流體設備代表了醫學治療和診斷的新興領域。微米和納米級系統具有獨特的特性,可提高控制,準確性,效率和速度,同時減少各種醫學測試和藥物輸送技術的浪費和操作者錯誤。為了完全實現這一令人興奮的領域的潛力,必須研究和理解相關系統的流動特性,以便可以正確設計新設備。在如此小的規模下研究流體流動行為需要使用顯微鏡,如果有希望實現納米級設備的潛力,則必須采用新穎的制造技術。椎間盤鏡檢查是醫學成像領域一項發達的技術。薄的焦平面,更高的分辨率和3D成像功能。然而,直到最近,對于需要快速圖像捕獲的動態系統進行成像,它還不是可行的技術。這是由于傳統的共聚焦系統的點掃描特性所致,在傳統的共聚焦系統中,使用掃描光子倍增管測量單個像素的強度。已經開發出了新的高速共焦系統,該系統利用旋轉磁盤上的針孔陣列實現了相機的快速全幀檢測。在俄亥俄州立大學開發了一種高速旋轉盤共聚焦顯微鏡系統,用于研究微米和納米級設備中的動態過程和流動行為;高速共聚焦系統用于生成流體的3D粒子跟蹤速度分布圖微通道中的流量,證明了不僅可以跟蹤通道中心的流量,還可以跟蹤頂部和底部的流量。這是用于研究其中將呈現3D流動特性的微型設備的寶貴工具。在微通道中研究了氣液氣泡的形成,并與模擬進行了比較。已確定無量綱的毛細管數以及氣液流速比和混合器的幾何形狀可用于精確預測微通道混合器中的氣泡大小和頻率。進行了深入的研究,以了解長鏈聚合物系統的基本分子行為,并研究了長鏈DNA溶液的流動行為,這些溶液可能存在于常見的收縮幾何結構的有用微流體裝置中。觀察到異常的粘彈性流動現象,并且在極高的彈性數下發現了新的生澀的剪切帶流動狀態。另外,生物聚合物的分子染色使得在有趣的流動過程中可以觀察到長鏈分子的行為。接下來,這種單鏈可視化技術用于在糾纏溶液中產生壁滑移的第一個分子成像。在滑移條件下,在通道流動和流變剪切實驗中均觀察到鏈解纏。最后,對醫學上重要的DNA溶液在納米通道裝置上的轉運進行了表征,證明了其作為新型基因傳遞技術的潛力。包含嵌入式納米通道的微通道陣列是使用俄亥俄州立大學開發的新型DNA梳理和壓印納米加工技術制造的。研究了反義寡核苷酸,質粒綠色熒光蛋白和線性綠色熒光蛋白分子的電動遷移。通過改變電場脈沖來控制穿過納米通道的分子數量的能力被證明為新型納米電穿孔設備建立了潛力。

著錄項

  • 作者

    Hemminger, Orin Lief.;

  • 作者單位

    The Ohio State University.;

  • 授予單位 The Ohio State University.;
  • 學科 Engineering Biomedical.;Engineering Chemical.
  • 學位 Ph.D.
  • 年度 2010
  • 頁碼 227 p.
  • 總頁數 227
  • 原文格式 PDF
  • 正文語種 eng
  • 中圖分類
  • 關鍵詞

相似文獻

  • 外文文獻
  • 中文文獻
  • 專利
獲取原文

客服郵箱:kefu@zhangqiaokeyan.com

京公網安備:11010802029741號 ICP備案號:京ICP備15016152號-6 六維聯合信息科技 (北京) 有限公司?版權所有
  • 客服微信

  • 服務號

主站蜘蛛池模板: 鸡泽县| 承德市| 浮梁县| 高阳县| 黄梅县| 轮台县| 万山特区| 克山县| 濮阳市| 海南省| 宽甸| 天津市| 芜湖市| 舞阳县| 思茅市| 富源县| 西吉县| 蓝田县| 平泉县| 油尖旺区| 中方县| 井研县| 阳城县| 襄垣县| 偏关县| 五指山市| 南丹县| 临夏市| 阿克苏市| 黎川县| 长汀县| 阳西县| 江永县| 台前县| 海宁市| 涿鹿县| 个旧市| 江门市| 伊春市| 永吉县| 鄯善县|